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PREFACE 

 

Welcome to the world of C++ programming and Data Structures and Algorithms (DSA). This 

book is designed to provide a comprehensive introduction to the C++ programming language and 

its application in the context of data structures and algorithms. 

C++ is a powerful and versatile programming language widely used in the software industry for 

developing a wide range of applications, from system software to graphical user interfaces, 

games, and more. With its rich set of features, including object-oriented programming, 

templates, and standard libraries, C++ offers both flexibility and efficiency, making it a popular 

choice among developers. 

Additionally, this book will delve into the realm of Data Structures and Algorithms, which form 

the backbone of computer science and software development. Understanding data structures and 

algorithms is crucial for building efficient and scalable software systems, as they provide the 

foundation for organizing, storing, and processing data effectively. 

We will explore various data structures, including arrays, linked lists, stacks, queues, trees, and 

graphs, along with their associated algorithms for operations such as searching, sorting, insertion, 

and deletion. Through practical examples, exercises, and programming assignments, we will 

develop a deep understanding of how to choose the right data structure and algorithm for solving 

specific problems efficiently. 

Whether you are a beginner looking to learn programming from scratch or an experienced 

developer seeking to enhance your skills in C++ and DSA, this book aims to provide you with 

the knowledge and tools you need to succeed in today's competitive software industry. 

So, let's embark on this exciting journey together and unlock the endless possibilities of C++ 

programming and Data Structures and Algorithms! 
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Unit-1 

Arrays 

 

Objective: 

 

At the end of this session student shall be learning: 

1. Understanding Array Basics 

2. Applying Array Operations 

3. Analyzing Time and Space Complexity 

4. Implementing Array-Based Algorithms 

5. Understanding Multidimensional Arrays 

Structure: 

1.1 Arrays 

1.2 Types of arrays 

1.3 Characteristics of Arrays 

1.4 Sparse matrix 

1.5 Representation of Sparse Matrix 

1.6 Advantages of Sparse Matrix 

1.7 Applications of Sparse Matrices 

1.8 Stacks 

1.9 Types of Stacks 

1.10 Simple stack implementation 

1.11 Multiple stack implementation 

1.12 Infix, Prefix and Postfix Expressions 

1.13 Conversion of Infix, Prefix and Postfix Expressions 

1.14 Applications of Stack 

1.15 Limitations of Array Representation of Stack 
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1.1 Arrays: An array is a data structure used in programming to store a collection of 

elements, typically of the same type, in a contiguous block of memory. Arrays are 

fundamental structures in many programming languages, providing efficient storage and 

retrieval of data. 

1.2 Types of Arrays: 

1. One-Dimensional Array: 

○ Also known as a single-dimensional array, it is a list of elements stored in a linear 

sequence. 

○ Example: int[] numbers = {1, 2, 3, 4, 5}; 

2. Multi-Dimensional Array: 

○ Arrays that have more than one dimension, such as two-dimensional arrays 

(matrices) or three-dimensional arrays. 

○ Example of a two-dimensional array: int[][] matrix = { {1, 2, 3}, {4, 5, 6}, {7, 8, 

9} }; 

1.3 Characteristics of Arrays: 

● Fixed Size: Once an array is created, its size cannot be changed. This means the number 

of elements it can hold is fixed. 

● Index-Based Access: Elements can be accessed directly using their index positions, 

which provides fast and efficient retrieval. 

● Homogeneous Elements: Arrays typically store elements of the same data type, ensuring 

type consistency. 
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1.4 Sparse Matrices:  

A sparse matrix is a type of matrix in which most of the elements are zero. Due to the large 

number of zero elements, storing all elements in a standard two-dimensional array would be 

inefficient in terms of both space and computational resources. Instead, specialized storage 

methods are used to take advantage of the sparsity. 

1.5 Representations of Sparse Matrices 

1. Array Representation: 

○ Compressed Sparse Row (CSR): This method stores the matrix in three separate 

arrays. One array holds the non-zero values, another holds the column indices of these 

non-zero values, and a third array keeps track of the starting index of each row in the 

values array. 

Example: For a matrix: 

[0 0 3] 

[4 0 0] 

[0 5 0] 

■ CSR representation would be: 

■ Values array: [3, 4, 5] 

■ Column indices: [2, 0, 1] 

■ Row pointers: [0, 1, 2, 3] 
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○ Compressed Sparse Column (CSC): Similar to CSR, but the columns are compressed 

instead of the rows. It uses three arrays to store non-zero values, their row indices, and 

column pointers. 

2. Linked List Representation: 

○ In this approach, each non-zero element of the matrix is represented by a node in a 

linked list. Each node contains information about the value of the element, its row and 

column indices, and pointers to the next non-zero elements in the row and column. 

Example: For a matrix: 

[0 0 3] 

[4 0 0] 

[0 5 0] 

The linked list representation would have nodes: 

Node1: Value 3, Row 0, Column 2, Pointer to next in row null, Pointer to next in column 

points to Node 3. 

Node2: Value 4, Row 1, Column 0, Pointer to next in row null, Pointer to next in column 

null. 

Node3: Value 5, Row 2, Column 1, Pointer to next in row null, Pointer to next in column 

null. 

1.6 Advantages of Sparse Matrix Representations 

● Memory Efficiency: Sparse matrix representations save memory by storing only non-

zero elements, significantly reducing space requirements. 
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● Improved Performance: Operations on sparse matrices, such as matrix-vector 

multiplication, can be performed more efficiently by skipping zero elements. 

1.7 Applications of Sparse Matrices 

● Scientific Computing: Many problems in scientific computing involve large matrices 

with few non-zero elements. 

● Graph Algorithms: Sparse matrices are used to represent adjacency matrices in graphs 

where the number of edges is much less than the possible number of edges. 

● Machine Learning: In machine learning, sparse matrices often represent data sets with 

many features but few non-zero values, such as text data in natural language processing. 

1.8 Stacks: A stack is a linear data structure that follows the Last In, First Out (LIFO) 

principle. This means that the last element added to the stack will be the first one to be 

removed. Stacks are widely used in various applications, such as expression evaluation, 

backtracking algorithms, and function call management in programming languages. 

1.9 Types of Stacks 

1. Simple Stack: 

○ A basic stack where elements are pushed and popped from one end called the top. 

2. Multiple Stacks: 

○ More than one stack can be implemented within a single array. This is useful in 

memory-constrained environments where multiple stacks share a common storage 

space. 
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1.10 Simple Stack Implementation in C++ 

Here's an implementation of a simple stack using an array in C++:  

“#include <iostream> 

#define MAX 1000 

class Stack { 

    int top; 

public: 

    int arr[MAX]; // Maximum size of Stack 

    Stack() { top = -1; } 

    bool push(int x); 

int pop(); 

    int peek(); 

    bool isEmpty(); 

}; 

bool Stack::push(int x) { 

    if (top >= (MAX - 1)) { 

        std::cout << "Stack Overflow\n"; 

        return false; 

    } else { 

        arr[++top] = x; 

        std::cout << x << " pushed into stack\n"; 

        return true; 

    } 
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} “ 

int Stack::pop() { 

    if (top < 0) { 

        std::cout << "Stack Underflow\n"; 

        return 0; 

    } else { 

        int x = arr[top--]; 

        return x; 

    } 

} 

int Stack::peek() { 

    if (top < 0) { 

        std::cout << "Stack is Empty\n"; 

        return 0; 

    } else { 

        int x = arr[top]; 

        return x; 

    } 

} 

bool Stack::isEmpty() { 

    return (top < 0); 

}“ 

int main() { 
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    Stack s; 

    s.push(10); 

    s.push(20); 

    s.push(30); 

    std::cout << s.pop() << " popped from stack\n"; 

    std::cout << "Top element is " << s.peek() << std::endl; 

    std::cout << "Stack is empty: " << (s.isEmpty() ? "true" : "false") << std::endl; 

    return 0; 

} “ 

1.11 Multiple Stacks Implementation in C++ 

Here's an implementation of multiple stacks using a single array in C++: 

“#include <iostream> 

#define MAX 1000 

class kStacks { 

    int *arr; 

    int *top; 

    int *next; 

    int n, k; 

    int free; 

public: 

    kStacks(int k, int n); 

    bool isFull() { return (free == -1); } 
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    bool isEmpty(int sn) { return (top[sn] == -1); } 

    void push(int item, int sn); 

    int pop(int sn); 

}; 

kStacks::kStacks(int k, int n) { 

    this->k = k; 

    this->n = n; 

    arr = new int[n]; 

    top = new int[k]; 

next = new int[n]; 

    for (int i = 0; i < k; i++) 

        top[i] = -1; 

    free = 0; 

    for (int i = 0; i < n - 1; i++) 

        next[i] = i + 1; 

    next[n - 1] = -1; 

} 

void kStacks::push(int item, int sn) { 

    if (isFull()) { 

        std::cout << "Stack Overflow\n"; 

        return; 

    } 

    int i = free; 
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    free = next[i]; 

    next[i] = top[sn]; 

    top[sn] = i; 

    arr[i] = item; 

} 

int kStacks::pop(int sn) { 

    if (isEmpty(sn)) { 

        std::cout << "Stack Underflow\n"; 

        return -1; 

    } 

    int i = top[sn]; 

    top[sn] = next[i]; 

    next[i] = free; 

    free = i; 

    return arr[i]; 

} 

int main() { 

    int k = 3, n = 10; 

    kStacks ks(k, n); 

    ks.push(15, 2); 

    ks.push(45, 2); 

    ks.push(17, 1); 

    ks.push(49, 1); 
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    ks.push(39, 1); 

    ks.push(11, 0); 

    ks.push(9, 0); 

    ks.push(7, 0); 

    std::cout << "Popped element from stack 2 is " << ks.pop(2) << std::endl; 

    std::cout << "Popped element from stack 1 is " << ks.pop(1) << std::endl; 

    std::cout << "Popped element from stack 0 is " << ks.pop(0) << std::endl; 

    return 0; 

} 

In the above implementation: 

● kStacks class handles multiple stacks in a single array. 

● arr is the array that stores the elements of all stacks. 

● top is an array that stores the index of the top elements of all stacks. 

● next is an array to maintain the next entry in all stacks and manage a free list. 

● free is an index of the beginning of the free list. 

1.12 Prefix, Infix, and Postfix: 

In the context of arithmetic and algebraic expressions, prefix, infix, and postfix are 

different notations used to write expressions. These notations determine the order of operators 

and operands in an expression. 
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Infix Expression: 

Infix notation is the most common and familiar way of writing expressions. In infix notation, 

operators are placed between the operands they operate on. This is the standard way humans 

write mathematical expressions. 

● Example: A + B 

● More Complex Example: (A + B) * (C - D) 

Infix expressions require rules of precedence (order of operations) and parentheses to determine 

the order of evaluation. 

Prefix Expression: 

Prefix notation, also known as Polish notation, places the operator before its operands. This 

notation eliminates the need for parentheses to indicate the order of operations since the position 

of the operator determines the order. 

● Example: + A B 

● More Complex Example: * + A B - C D 

In this notation, the expression is evaluated from right to left. 

Postfix Expression: 

Postfix notation, also known as Reverse Polish notation (RPN), places the operator after its 

operands. Like prefix notation, postfix notation does not require parentheses for determining the 

order of operations. 
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● Example: A B + 

● More Complex Example: A B + C D - * 

In this notation, the expression is evaluated from left to right. 

1.13 Conversion and Evaluation: 

Conversions between these notations involve understanding the order of operations and the use 

of stacks for managing operators and operands. Here's a brief overview of how each notation can 

be converted: 

● Infix to Prefix: Move the operator before the operands while maintaining the order of 

operations. 

● Infix to Postfix: Move the operator after the operands while maintaining the order of 

operations. 

● Prefix to Infix: Insert the operator between the operands and add parentheses as needed. 

● Postfix to Infix: Insert the operator between the operands and add parentheses as needed. 

Evaluation Example 

Let's evaluate an example for better understanding: 

Infix: (A + B) * (C - D) 

Prefix: * + A B - C D 

1. + A B → evaluate addition of A and B. 

2. - C D → evaluate subtraction of D from C. 
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3. * → multiply results of step 1 and step 2. 

Postfix: A B + C D - * 

● A B + → evaluate addition of A and B. 

● C D - → evaluate subtraction of D from C. 

● * → multiply results of step 1 and step 2. 

1.14 Applications of stacks: 

1. Expression Evaluation 

2. Expression Parsing 

3. Function Call Management 

4. Undo Mechanisms 

5. Depth-First Search (DFS) 

6. Backtracking Algorithms 

7. Memory Management 

8. Browser History Management 

9. Expression Conversion 

10. Tree Traversals 

11. Balanced Parentheses 

12. Runtime Stack 
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1.15 The limitations of Array representation of a Stack: 

1. Fixed Size 

2. Memory Inefficiency 

3. Inflexibility 

4. Limited Capacity 

5. Inefficient Space Utilization 

6. Potential Wastage 

7. Complexity of Expansion 

8. Contiguous Memory Requirement 

Summary 

While array-based stacks are straightforward and efficient for managing a fixed number of 

elements, their limitations make them less suitable for applications requiring dynamic resizing, 

unpredictable stack sizes, or efficient memory utilization. For these scenarios, alternative 

implementations such as linked-list-based stacks or dynamic array structures (e.g., using 

std::vector in C++) might be more appropriate. 

 

 

 

 

 

 



16 
 

Unit -2 

List 

 

Objective: 

 

At the end of this session student shall be learning: 

1. Understanding of Data Structures 

2. Proficiency in List Operations 

3. Application of Lists in Real-World Scenarios 

4. Comparison of List Variants 

5. Introduction to Advanced List Structures 

Structure: 

2.1 linked List 

2.2 Types of Linked Lists 

2.3 Advantages of Linked Lists 

2.4 Disadvantages of Linked Lists 

2.5 Applications of Linked Lists 

2.6 Example Implementations 

2.7 Stack Representation in Linked Lists 

2.8 Normal Stack Representation 

2.9 Circular Stack Representation 

2.10 Key differences 

2.11 Self Organizing Lists 

2.12 Skip Lists 
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2.1 linked list: 

A linked list is a data structure consisting of a sequence of elements, each containing a reference 

(or link) to the next element in the sequence. Unlike arrays, linked lists do not store elements in 

contiguous memory locations, which allows for efficient insertion and deletion operations. 

2.2 Types of Linked Lists 

1. Singly Linked List: 

 Structure: Each node contains data and a reference to the next node in the sequence. 

 Example: Node -> Node -> Node -> NULL 

 Operations: Insertion, deletion, and traversal are straightforward but can only be done in 

one direction. 

2. Doubly Linked List: 

 Structure: Each node contains data, a reference to the next node, and a reference to the 

previous node. 

 Example: NULL <- Node <-> Node <-> Node -> NULL 

 Operations: Supports bidirectional traversal, making it easier to navigate backward and 

forward. 

3. Circular Linked List: 

 Structure: The last node in the list points back to the first node, forming a circle. 

 Example: Node -> Node -> Node -> Node -> ... -> Node 

 Operations: Useful for applications where the list needs to be accessed in a circular 

manner. 
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2.3 Advantages of Linked Lists 

● Dynamic Size: Linked lists can grow or shrink dynamically, unlike arrays which have a 

fixed size. 

● Efficient Insertions/Deletions: Insertions and deletions are more efficient, especially for 

large lists, as they do not require shifting elements as in arrays. 

2.4 Disadvantages of Linked Lists 

● Memory Usage: Linked lists use extra memory for storing references to the next (and 

possibly previous) nodes. 

● Access Time: Accessing elements takes linear time (O(n)) as opposed to constant time 

(O(1)) in arrays, due to sequential traversal. 

2.5 Applications of Linked Lists 

● Dynamic Memory Allocation: Used in applications requiring frequent insertions and 

deletions. 

● Implementing Data Structures: Used to implement other data structures like stacks, 

queues, and graphs. 

● Handling Polynomial Arithmetic: Efficiently manages polynomial operations where 

terms are inserted and deleted frequently. 

2.6 Example Implementations 

Here's a basic implementation of a singly linked list in C++: 
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“#include <iostream> 

using namespace std; 

class Node { 

public: 

    int data; 

    Node* next; 

    Node(int data) { 

        this->data = data; 

        this->next = nullptr; 

    } 

}; 

class LinkedList { 

private: 

    Node* head; 

 

public: 

    LinkedList() { 

        head = nullptr; 

    } 

    void insertAtEnd(int data) { 

        Node* newNode = new Node(data); 

        if (head == nullptr) { 
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            head = newNode; 

            return; 

        } 

        Node* temp = head; 

        while (temp->next != nullptr) { 

            temp = temp->next; 

        } 

        temp->next = newNode; 

    } 

    void deleteAtBegin() { 

        if (head == nullptr) { 

            cout << "List is empty" << endl; 

            return; 

        } 

        Node* temp = head; 

        head = head->next; 

        delete temp; 

    } 

    void display() { 

        if (head == nullptr) { 

            cout << "List is empty" << endl; 

            return; 

        } 
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        Node* temp = head; 

        while (temp != nullptr) { 

            cout << temp->data << " "; 

            temp = temp->next; 

        } 

        cout << endl; 

    } 

}; 

int main() { 

    LinkedList list; 

    list.insertAtEnd(10); 

    list.insertAtEnd(20); 

    list.insertAtEnd(30); 

    list.display(); 

    list.deleteAtBegin(); 

    list.display(); 

    return 0; 

} “ 

This example demonstrates basic operations like insertion, deletion, and traversal in a singly 

linked list. Similar principles can be applied to implement other types of linked lists, with 

adjustments to handle additional links and structures. 
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2.7 Stack Representation in Linked Lists: 

● Normal Stack Representation using a Singly Linked List 

A normal stack implemented with a singly linked list involves having a top pointer that 

points to the last inserted element, which follows the Last In, First Out (LIFO) principle. 

Implementation: 

Here is an implementation of a normal stack using a singly linked list in C++: 

“#include <iostream> 

class Node { 

public: 

    int data; 

    Node* next; 

    Node(int data) { 

        this->data = data; 

        this->next = nullptr; 

    } 

}; 

class Stack { 

private: 

    Node* top; 

public: 

    Stack() { 

        top = nullptr; 

    } 
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    void push(int data) { 

        Node* newNode = new Node(data); 

        newNode->next = top; 

        top = newNode; 

        std::cout << data << " pushed onto stack\n"; 

    } 

    void pop() { 

        if (top == nullptr) { 

            std::cout << "Stack Underflow\n"; 

            return; 

        } 

        Node* temp = top; 

        top = top->next; 

        std::cout << temp->data << " popped from stack\n"; 

        delete temp; 

    }“ 

    void display() { 

        if (top == nullptr) { 

            std::cout << "Stack is empty\n"; 

            return; 

        } 

        Node* temp = top; 

        while (temp != nullptr) { 
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            std::cout << temp->data << " "; 

            temp = temp->next; 

        } 

        std::cout << std::endl; 

    }“ 

}; 

int main() { 

    Stack stack; 

    stack.push(10); 

    stack.push(20); 

    stack.push(30); 

    stack.display(); 

    stack.pop(); 

    stack.display(); 

    return 0; 

} “ 

● Circular Stack Representation using a Circular Linked List 

In a circular stack, the last node points back to the first node, creating a circular structure. 

This can be useful for applications that require circular traversal. 

Implementation 

Here is an implementation of a circular stack using a singly linked list in C++: 
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“#include <iostream> 

class Node { 

public: 

    int data; 

    Node* next; 

    Node(int data) { 

        this->data = data; 

        this->next = nullptr; 

    } 

}; 

class CircularStack { 

private: 

    Node* top; 

public: 

    CircularStack() { 

        top = nullptr; 

    } 

    void push(int data) { 

        Node* newNode = new Node(data); 

        if (top == nullptr) { 

            top = newNode; 

            newNode->next = top; // Point to itself to make it circular 

        } else { 
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            Node* temp = top; 

            while (temp->next != top) { 

                temp = temp->next; 

            } 

            temp->next = newNode; 

            newNode->next = top; 

            top = newNode; 

        } 

        std::cout << data << " pushed onto circular stack\n"; 

    } 

    void pop() { 

        if (top == nullptr) { 

            std::cout << "Circular Stack Underflow\n"; 

            return; 

        } 

        if (top->next == top) { // Only one node in the stack 

            std::cout << top->data << " popped from circular stack\n"; 

            delete top; 

            top = nullptr; 

        } else { 

            Node* temp = top; 

            while (temp->next != top) { 

                temp = temp->next; 
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            } 

            Node* delNode = top; 

            temp->next = top->next; 

            top = top->next; 

            std::cout << delNode->data << " popped from circular stack\n"; 

            delete delNode; 

        } 

    }“ 

    void display() { 

        if (top == nullptr) { 

            std::cout << "Circular Stack is empty\n"; 

            return; 

        } 

        Node* temp = top; 

        do { 

            std::cout << temp->data << " "; 

            temp = temp->next; 

        } while (temp != top); 

        std::cout << std::endl; 

    } 

}; “ 

int main() { 

    CircularStack cStack; 
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    cStack.push(10); 

    cStack.push(20); 

    cStack.push(30); 

    cStack.display(); 

    cStack.pop(); 

    cStack.display(); 

    return 0; 

} “ 

 

2.8 Key Differences 

● Normal Stack: Uses a singly linked list where the top pointer points to the most recently 

added element. The next pointer of the last node is nullptr. 

● Circular Stack: Uses a circular linked list where the top pointer also points to the most 

recently added element, but the next pointer of the last node points back to the top, 

forming a circular structure. 

 

2.9 Self-Organizing Lists 

A self-organizing list is a type of list that reorders its elements based on access patterns to 

improve search efficiency over time. The primary goal is to reduce the average time complexity 

for searching elements that are accessed frequently. 

 

Types of Self-Organizing Lists 

1. Move-to-Front (MTF) 

○ Mechanism: Whenever an element is accessed, it is moved to the front of the list. 

○ Advantages: Frequently accessed elements are quickly found, as they tend to 

accumulate at the front of the list. 

○ Disadvantages: Can be inefficient for elements that are accessed less frequently or 

accessed in a more uniform manner. 
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2. Transpose 

○ Mechanism: When an element is accessed, it is swapped with the previous 

element. 

○ Advantages: Provides a moderate reordering approach where frequently accessed 

elements gradually move to the front. 

○ Disadvantages: Less aggressive than MTF, so it may take longer for frequently 

accessed elements to reach the front. 

3. Count 

○ Mechanism: Each element has a counter that tracks how many times it has been 

accessed. The list is periodically reordered based on these counters. 

○ Advantages: Ensures elements are sorted based on their access frequency. 

○ Disadvantages: Requires additional memory for counters and periodic reordering, 

which can be computationally expensive. 

 

Applications 

● Cache Management: Used in caching algorithms where frequently accessed items need to 

be quickly retrievable. 

● Data Compression: Used in adaptive compression algorithms where certain symbols are 

accessed more frequently. 

● Dynamic Search Optimization: In scenarios where the access patterns of data change over 

time, self-organizing lists can adapt to improve efficiency. 

 

2.10 Skip Lists: 

Skip lists are a probabilistic data structure that allows fast search, insertion, and deletion 

operations. They are an alternative to balanced trees and provide logarithmic time complexity for 

these operations. 

 

Structure 

● Levels: Skip lists consist of multiple levels of linked lists. The bottom level is an ordinary 

linked list, and each higher level acts as an "express lane" to skip over multiple elements. 
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● Nodes: Each node contains a key and multiple forward pointers, one for each level. The 

number of levels for each node is determined probabilistically. 

 

Operations 

1. Search 

○ Mechanism: Starts at the highest level and moves forward until the next node's key is 

greater than the target key or the end of the list is reached. Then, it drops down a level 

and continues the search. 

○ Time Complexity: Average case O(log n). 

2. Insertion 

○ Mechanism: Similar to search, but nodes are inserted at the appropriate positions at each 

level. 

○ Time Complexity: Average case O(log n). 

3. Deletion 

○ Mechanism: Similar to search, but nodes are removed from each level. 

○ Time Complexity: Average case O(log n). 

 

Advantages 

● Simplicity: Easier to implement and understand compared to balanced trees. 

● Flexibility: The probabilistic nature allows for simple adjustments and dynamic updates 

without complex rebalancing. 

 

Disadvantages 

● Space Usage: Requires additional pointers, leading to higher memory consumption 

compared to simple linked lists. 

● Randomness: Performance depends on randomization, which can occasionally lead to 

less optimal configurations. 
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Applications 

● Databases: Used in databases for indexing to allow fast search, insertion, and deletion 

operations. 

● Networking: Applied in routing algorithms where efficient path finding is crucial. 

● Concurrent Computing: Adapted for concurrent data structures where multiple processes 

need to access and modify the list efficiently. 
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Unit 3 

Queues  

 

 

Objective: 

At the end of this session students shall be learning: 

●            “ Introduction of Principle of OOP's concept 

●         Understand Object Oriented Methodology 

●         Overview of procedure Oriented programming 

●         Definition of Object Oriented Programming. 

●         Object Oriented Languages” 

Structure: 

3.1 Queues: Array and Linked Representation 

3.2 Linked List Representation of Queues 

3.3 Priority Queue: Concepts and Implementations 

3.4 Recursion 

3.5 Internal Stack Implementation in Recursion 

3.6 Benefits of “OOP” 

3.7 Object Oriented Language 

3.8 Application of “OOP” 
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3.1 Queues: Array and Linked Representation 

Queues are a fundamental data structure in computer science, operating on a First-In-First-Out 

(FIFO) principle. This means that the first element added to the queue will be the first one to be 

removed. There are two primary ways to implement queues: using arrays and using linked lists. 

Each implementation has its advantages and disadvantages. 

3.1.1 Array Representation of Queues 

In an array-based queue, the queue is typically implemented using a fixed-size array along with 

two pointers or indices: front and rear. 

Structure: 

1. Array: A fixed-size array to store the elements. 

2. Front: An index to the front of the queue. 

3. Rear: An index to the rear of the queue. 

Operations: 

1. Enqueue (Insertion): 

○ Check if the queue is full. If the rear is at the last index, the queue is full. 

○ If not full, increment rear and insert the new element at the rear position. 

       Example: 

“def enqueue(queue, element): 

    if queue['rear'] == len(queue['array']) - 1: 

     print("Queue is full") 

    else: 

        if queue['front'] == -1:  # If queue is empty 

        queue['front'] = 0 

        queue['rear'] += 1 

        queue['array'][queue['rear']] = element” 
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3.1.2 Dequeue (Removal): 

● Check if the queue is empty. If the front is -1 or  front is greater than  rear, the queue is 

empty. 

● If not empty, return the element at front and increment front. 

 

Example: 

 

“def dequeue(queue): 

    if queue['front'] == -1 or queue['front'] > queue['rear']: 

        print("Queue is empty") 

        return None 

    else: 

        element = queue['array'][queue['front']] 

        queue['front'] += 1 

        return element” 

3.2 Linked List Representation of Queues 

In a linked list-based queue, the queue is implemented using nodes where each node has a value 

and a reference to the next node. 

Structure: 

1. Node: Each node contains an element and a pointer to the next node. 

2. Front: A pointer to the front node of the queue. 

3. Rear: A pointer to the rear node of the queue. 

Example: 

“class Node: 

    def __init__(self, value): 

        self.value = value 

        self.next = None” 
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3.3 Priority Queue: Concepts and Implementations 

A priority queue is an advanced type of queue in which each element is associated with a 

priority. Elements are dequeued based on their priority rather than the order they were enqueued. 

Elements with higher priority are dequeued before those with lower priority. In order to preserve 

the First-In-First-Out (FIFO) order for items with equal priority, two elements with the same 

priority are dequeued in accordance with their arrival order. 

3.3.1 Array-based Implementation 

In an array-based priority queue, the array is used to store elements along with their priorities. 

The array can be sorted or unsorted. 

1. Unsorted Array: 

● Enqueue: O(1) time complexity. Simply add the element to the end of the array. 

● Dequeue: O(n) time complexity. Search through the array to find the element with the 

highest priority and remove it. 

Example: 

“class UnsortedPriorityQueue: 

    def __init__(self): 

        self.queue = [] 

 

    def enqueue(self, element, priority): 

        self.queue.append((element, priority)) 

 

    def dequeue(self): 

        if not self.queue: 

            print("Queue is empty") 

            return None 

        max_priority_index = 0 

        for i in range(1, len(self.queue)): 

            if self.queue[i][1] > self.queue[max_priority_index][1]: 

                max_priority_index = i 

        return self.queue.pop(max_priority_index) 

 

    def peek(self): 
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        if not self.queue: 

            print("Queue is empty") 

            return None 

        max_priority_index = 0 

        for i in range(1, len(self.queue)): 

            if self.queue[i][1] > self.queue[max_priority_index][1]: 

                max_priority_index = i 

        return self.queue[max_priority_index] 

 

    def is_empty(self): 

        return len(self.queue) == 0” 

3.3.2 Linked List-based Implementation 

In a linked list-based priority queue, each node contains an element and its priority. 

1. Unsorted Linked List: 

● Enqueue: O(1) time complexity. Insert the new node at the head of the list. 

● Dequeue: O(n) time complexity. Traverse the list to find and remove the node with the 

highest priority. 

     Example: 

“class Node: 

    def __init__(self, element, priority): 

        self.element = element 

        self.priority = priority 

        self.next = None 

 

class UnsortedLinkedListPriorityQueue: 

    def __init__(self): 

        self.head = None 

 

    def enqueue(self, element, priority): 

        new_node = Node(element, priority) 

        new_node.next = self.head 

        self.head = new_node 

 

    def dequeue(self): 

        if not self.head: 

            print("Queue is empty") 
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            return None 

        max_priority_node = self.head 

        max_priority_node_prev = None 

        current = self.head 

        prev = None 

        while current: 

            if current.priority > max_priority_node.priority: 

                max_priority_node = current 

                max_priority_node_prev = prev 

            prev = current 

            current = current.next 

        if max_priority_node_prev: 

            max_priority_node_prev.next = max_priority_node.next 

        else: 

            self.head = max_priority_node.next 

        return max_priority_node.element 

 

    def peek(self): 

        if not self.head: 

            print("Queue is empty") 

            return None 

        max_priority_node = self.head 

        current = self.head 

        while current: 

            if current.priority > max_priority_node.priority: 

                max_priority_node = current 

            current = current.next 

        return max_priority_node.element 

 

    def is_empty(self): 

        return self.head is None” 

 

3.4 Recursion: 

Programming recursion is the process by which a function calls itself to address progressively 

smaller versions of the same problem. This approach can simplify the code for problems that 

have a natural recursive structure, such as those involving hierarchical or repetitive processes. 
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3.4.1 How Recursion Works 

In a recursive function, there are two main components: 

1. Base Case: This is the condition under which the recursion ends. Without a base case, the 

function would call itself indefinitely, leading to infinite recursion and eventually a stack 

overflow. 

2. Recursive Case: This is where the function calls itself with a smaller or simpler 

argument, moving towards the base case. 

3.4.2 Example of a Recursive Function: Factorial 

“The factorial of a non-negative integer nnn is the product of all positive integers less than or 

equal to nnn. It is denoted as n!n!n!. 

n!=n×(n−1)×(n−2)×⋯ ×1n! = n \times (n-1) \times (n-2) \times \cdots \times 

1n!=n×(n−1)×(n−2)×⋯ ×1 

For instance: 

● 5!=5×4×3×2×1=1205! = 5 \times 4 \times 3 \times 2 \times 1 = 1205!=5×4×3×2×1=120 

● 3!=3×2×1=63! = 3 \times 2 \times 1 = 63!=3×2×1=6 

Using recursion, the factorial can be defined as: 

● Base Case: 0!=10! = 10!=1 

● Recursive Case: n!=n×(n−1)!n! = n \times (n-1)!n!=n×(n−1)!” 

3.4.3 Advantages of Recursion 

1. Simplified Code: Recursive solutions can be more concise and easier to understand, 

especially for problems that have a natural recursive structure, such as tree traversals, 

factorial calculation, and the Fibonacci sequence. 

○ Example: Calculating the factorial using recursion is straightforward and mirrors 

the mathematical definition. 

2. Elegant Solutions: Recursive functions can often provide elegant solutions to complex 

problems. This is particularly true for problems involving divide-and-conquer strategies, 

like quicksort and mergesort. 
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3. Reduced Code Complexity: For problems like directory traversal or solving puzzles 

(e.g., Towers of Hanoi), recursion can reduce the complexity of the code compared to 

iterative solutions. 

3.4.4 Disadvantages of Recursion 

1. Performance Overhead: Recursive calls involve function call overhead and use more stack 

space. Each recursive call adds a new frame to the call stack, which can lead to higher 

memory usage and slower execution. 

○ Example: Calculating large factorials recursively can quickly exhaust the stack, leading to a 

stack overflow error. 

2. Stack Overflow: If the recursion depth is too large (i.e., too many recursive calls), it can lead 

to a stack overflow, where the program runs out of stack memory. 

○ Example: Deeply nested recursive calls without an adequate base case can cause the program 

to crash. 

3. Difficult to Debug: Recursive functions can be harder to debug and understand, especially 

when the recursion depth is deep. It can be challenging to track the flow of recursive calls 

and their respective states. 

3.4.5 Example of Recursion: Fibonacci Sequence 

The Fibonacci sequence is another classic example of recursion. Each number in the sequence is 

the sum of the two preceding ones, usually starting with 0 and 1. 

“F(n)=F(n−1)+F(n−2)F(n) = F(n-1) + F(n-2)F(n)=F(n−1)+F(n−2) 

With the base cases: 

● F(0)=0F(0) = 0F(0)=0 

● F(1)=1F(1) = 1F(1)=1” 

3.5 Internal Stack Implementation in Recursion 

When a function is called, the system uses a stack data structure to manage the function calls. 

This stack is known as the call stack. Each time a function is invoked, a stack frame is created 
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to store the function's local variables, arguments, return address, and the state of the function. 

When the function completes, its stack frame is popped off the stack. 

3.5.1 How the Call Stack Works in Recursion 

In recursion, multiple stack frames are created as the function calls itself. Understanding how the 

call stack operates helps in grasping the internal workings of recursion. 

1. Function Call: 

○ A new stack frame is added to the call stack whenever a recursive function is invoked. 

○ The parameters of the function, local variables, and the return address are all listed in this 

stack frame. 

2. Base Case: 

○ The recursion progresses until it reaches the base case. 

○ Once the base case is met, the function begins to return, and stack frames start to be 

popped off. 

3. Returning from Recursion: 

○ As each recursive call returns, its corresponding stack frame is popped off the stack. 

○ The function resumes execution from the point where it was paused, using the saved 

return address. 

3.5.2 Example: Factorial Function with Stack Frames 

Consider the factorial function implemented recursively. The factorial of n (denoted as n!n!n!) is 

defined as: 

“n!=n×(n−1)×(n−2)×⋯ ×1n! = n \times (n-1) \times (n-2) \times \cdots \times 

1n!=n×(n−1)×(n−2)×⋯ ×1 “ 

For n=5n = 5n=5: 

Here is the recursive implementation: 

“5!=5×4×3×2×1=1205! = 5 \times 4 \times 3 \times 2 \times 1 = 1205!=5×4×3×2×1=120 

def factorial(n): 

    if n == 0:  # Base case 
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        return 1 

    else:  # Recursive case 

        return n * factorial(n - 1)” 
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Unit 4 

Tree 

 

Objective: 

At the end of this session students shall be learning: 

●            “ Introduction of Principle of OOP's concept 

●         Understand Object Oriented Methodology 

●         Overview of procedure Oriented programming 

●         Definition of Object Oriented Programming. 

●         Object Oriented Languages” 

Structure: 

4.1 Introduction to Trees as a Data Structure 

4.2 Binary Tree 

4.3 Traversal in a Binary Tree 

4.4 Threaded Binary Tree 

4.5 Height-Balanced Tree: AVL Tree 
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4.1 Introduction to Trees as a Data Structure “ 

A tree is a widely used data structure that simulates a hierarchical tree structure with a set of 

connected nodes. Each node contains a value and references to other nodes (its children). Trees 

are used in various applications, including databases, file systems, and network routing. “ 

Key Terminology “ 

1. Root: The topmost node of a tree. 

2. Node: An element of the tree that contains a value. 

3. Parent: A node that has one or more child nodes. 

4. Child: A node that has a parent node. 

5. Leaf: A node with no children. 

6. Subtree: A tree formed by a node and its descendants. 

7. Height: The number of edges on the longest path from the root to a leaf. 

8. Depth: The number of edges from the root to a node. “ 

4.2 Binary Tree 

A binary tree is a type of tree where each node has at most two children, referred to as the left 

child and the right child. This structure is particularly useful for implementing binary search 

trees, heaps, and other algorithms. 

4.1.1 Binary Tree Operations 

1. Insertion 

2. Deletion 

3. Traversal 

4.1.2 Insertion in a Binary Tree 

Insertion in a binary tree involves adding a new node at the first available position in level order 

(left to right). 

4.1.3 Algorithm for Insertion: 

1. Create a new node. 

2. Use a queue to perform level order traversal. 
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3. Find the first node that does not have two children. 

4. Insert the new node as a left or right child of the node found in step 3. 

“4.1.4 Example Implementation: 

class Node: 

    def __init__(self, key): 

        self.left = None 

        self.right = None 

        self.value = key 

def insert(root, key): 

    if root is None: 

        return Node(key) 

    queue = [root] 

    while queue: 

        temp = queue.pop(0) 

        if not temp.left: 

            temp.left = Node(key) 

            break 

        else: 

            queue.append(temp.left) 

        if not temp.right: 

            temp.right = Node(key) 

            break 

        else: 

            queue.append(temp.right) 
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    return root” 

4.1.5 Deletion in a Binary Tree 

Deletion in a binary tree involves removing a node and ensuring the tree remains a valid binary 

tree after the deletion. 

4.1.6 Algorithm for Deletion: 

1. Find the deepest and rightmost node in the binary tree. 

2. Replace the value of the node to be deleted with the deepest node's value. 

3. Delete the deepest node. 

4.1.7 Example Implementation: 

“def delete_deepest(root, d_node): 

    queue = [root] 

    while queue: 

        temp = queue.pop(0) 

        if temp is d_node: 

            temp = None 

            return 

        if temp.right: 

            if temp.right is d_node: 

                temp.right = None 

                return 

            else: 

                queue.append(temp.right) 

        if temp.left: 

            if temp.left is d_node: 
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         temp.left = None 

                return 

            else: 

                queue.append(temp.left) 

def deletion(root, key): 

    if root is None: 

        return None 

    if root.left is None and root.right is None: 

        if root.value == key: 

            return None 

        else: 

            return root 

    key_node = None 

    queue = [root] 

    while queue: 

        temp = queue.pop(0) 

        if temp.value == key: 

            key_node = temp 

        if temp.left: 

            queue.append(temp.left) 

        if temp.right: 

            queue.append(temp.right) 

    if key_node: 
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        x = temp.value 

        delete_deepest(root, temp) 

        key_node.value = x 

    return root” 

4.3 Traversal in a Binary Tree “ 

Traversal is the process of visiting all the nodes of a binary tree in a specific order. The most 

common traversal methods are: 

1. In-order Traversal: Left subtree, Root, Right subtree 

2. Pre-order Traversal: Root, Left subtree, Right subtree 

3. Post-order Traversal: Left subtree, Right subtree, Root 

4. Level-order Traversal: Level by level from top to bottom “ 

4.3.1 Example Implementations: 

In-order Traversal: 

“def inorder_traversal(root): 

    if root: 

        inorder_traversal(root.left) 

        print(root.value, end=' ') 

        inorder_traversal(root.right)” 

Pre-order Traversal: 

  “def preorder_traversal(root): 

    if root: 

        print(root.value, end=' ') 

        preorder_traversal(root.left) 

        preorder_traversal(root.right)” 
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Post-order Traversal: 

“def postorder_traversal(root): 

    if root: 

        postorder_traversal(root.left) 

        postorder_traversal(root.right) 

        print(root.value, end=' ')” 

Level-order Traversal: 

“def level_order_traversal(root): 

    if root is None: 

        return 

    queue = [root] 

    while queue: 

        temp = queue.pop(0) 

        print(temp.value, end=' ') 

        if temp.left: 

            queue.append(temp.left) 

        if temp.right: 

            queue.append(temp.right)” 

4.4 Threaded Binary Tree 

A Threaded Binary Tree is a type of binary tree where nodes are arranged to make in-order 

traversal faster and more efficiently. In a threaded binary tree, the null pointers are replaced with 

pointers to the in-order predecessor or successor, thus "threading" through the binary tree. This 

allows traversal without using a stack or recursion. 

4.4.1 Types of Threaded Binary Trees 
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1. Single Threaded: Every node threads toward either its predecessor or successor in the 

order it appears. 

2. Every node has two threads, one for each of its predecessors and successors in the order 

they appear in the list. 

4.4.2 Insertion in a Threaded Binary Tree 

Inserting a node in a threaded binary tree involves updating the existing threads to maintain the 

structure. 

Algorithm for Insertion: 

1. Find the correct position for the new node in the binary tree. 

2. Update the threads: Adjust the threads of the predecessor and successor nodes to point to 

the new node. 

Example Implementation: 

“class Node: 

    def __init__(self, key): 

        self.left = None 

        self.right = None 

        self.value = key 

        self.lthread = False 

        self.rthread = False 

def insert(root, key): 

    parent = None 

    current = root 

    while current: 

        parent = current 

        if key < current.value: 

            if current.lthread: 
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                break 

            current = current.left 

        else: 

            if current.rthread: 

                break 

            current = current.right 

    new_node = Node(key) 

    if not parent: 

        root = new_node 

    elif key < parent.value: 

        new_node.left = parent.left 

        new_node.right = parent 

        parent.lthread = False 

        parent.left = new_node 

    else: 

        new_node.left = parent 

        new_node.right = parent.right 

        parent.rthread = False” 

        parent.right = new_node 

    return root 

4.4.3 Deletion in a Threaded Binary Tree 

Deleting a node in a threaded binary tree requires careful handling of threads to maintain the 

structure. 

Algorithm for Deletion: “ 
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1. Find the node to be deleted. 

2. Handle three cases: 

○ Node with no children (leaf node) 

○ Node with one child 

○ Node with two children 

3. Update the threads of predecessor and successor nodes to bypass the deleted node. “ 

Example Implementation: 

“def delete(root, key): 

    parent = None 

    current = root 

    while current: 

        if key == current.value: 

            break 

        parent = current 

        if key < current.value: 

            if current.lthread: 

                return root 

            current = current.left 

        else: 

            if current.rthread: 

                return root 

            current = current.right 

    if not current.left and not current.right: 

        if not parent: 

            root = None 
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        elif parent.left == current: 

            parent.left = current.left 

            parent.lthread = True 

        else: 

            parent.right = current.right 

            parent.rthread = True 

    elif not current.left: 

        if not parent: 

            root = current.right 

        elif parent.left == current: 

            parent.left = current.right 

        else: 

            parent.right = current.right 

    elif not current.right: 

        if not parent: 

            root = current.left 

        elif parent.left == current: 

            parent.left = current.left 

        else: 

            parent.right = current.left 

    else: 

        succ_parent = current 

        succ = current.right 
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        while not succ.lthread: 

            succ_parent = succ 

            succ = succ.left 

        current.value = succ.value 

        if succ_parent.left == succ: 

            succ_parent.left = succ.right 

        else: 

            succ_parent.right = succ.right 

    return root” 

4.5 Height-Balanced Tree: AVL Tree 

An AVL Tree, also known as an Adelson-Velsky and Landis Tree, is a self-balancing binary 

search tree in which there is never more than one height difference between any node's left and 

right subtrees. This height balance ensures that the tree maintains O(log n) time complexity for 

insertion, deletion, and lookup operations. 

AVL Tree Operations 

1. Insertion 

2. Deletion 

3. Rotations 

4. Traversal 

4.5.1 Insertion in an AVL Tree 

Insertion in an AVL tree is similar to insertion in a binary search tree, followed by balancing the 

tree if it becomes unbalanced. 

Algorithm for Insertion: 

1. Perform standard BST insertion. 

2. Update the height of the current node. 

3. Determine the balancing factor by dividing the height of the left and right subtrees. 

4. Rotations should be used to rebalance the tree if the balance factor is more than or less 

than -1. 
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Example: 

“class Node: 

    def __init__(self, key): 

        self.left = None 

        self.right = None 

        self.value = key 

        self.height = 1 

def get_height(node): 

    if not node: 

        return 0 

    return node.height 

def get_balance(node): 

    if not node: 

        return 0 

    return get_height(node.left) - get_height(node.right) 

def right_rotate(y): 

    x = y.left 

    T2 = x.right 

    x.right = y 

    y.left = T2 

    y.height = max(get_height(y.left), get_height(y.right)) + 1 

    x.height = max(get_height(x.left), get_height(x.right)) + 1 

    return x 
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def left_rotate(x): 

    y = x.right 

    T2 = y.left 

    y.left = x 

    x.right = T2 

    x.height = max(get_height(x.left), get_height(x.right)) + 1 

    y.height = max(get_height(y.left), get_height(y.right)) + 1 

    return y 

def insert(root, key): 

    if not root: 

        return Node(key) 

    elif key < root.value: 

        root.left = insert(root.left, key) 

    else: 

        root.right = insert(root.right, key) 

    root.height = max(get_height(root.left), get_height(root.right)) + 1 

    balance = get_balance(root) 

    if balance > 1 and key < root.left.value: 

        return right_rotate(root) 

    if balance < -1 and key > root.right.value: 

        return left_rotate(root) 

    if balance > 1 and key > root.left.value: 

        root.left = left_rotate(root.left) 
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        return right_rotate(root) 

    if balance < -1 and key < root.right.value: 

        root.right = right_rotate(root.right) 

        return left_rotate(root) 

    return root” 

4.5.2 Deletion in an AVL Tree 

Deletion in an AVL tree involves removing the node and then balancing the tree if it becomes 

unbalanced. 

Algorithm for Deletion: 

1. Execute a typical BST delete. 

2. Adjust the current node's height. 

3. Determine the component of balance. 

4. Rotations should be used to rebalance the tree if the balance factor is more than or less 

than -1. 

Example: 

“def min_value_node(node): 

    current = node 

    while current.left: 

        current = current.left 

    return current 

def delete(root, key): 

    if not root: 

        return root 

    elif key < root.value: 

        root.left = delete(root.left, key) 
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    elif key > root.value: 

        root.right = delete(root.right, key) 

    else: 

        if root.left is None: 

            temp = root.right 

            root = None 

            return temp 

        elif root.right is None: 

            temp = root.left 

            root = None 

            return temp 

        temp = min_value_node(root.right) 

        root.value = temp.value 

        root.right = delete(root.right, temp.value) 

    if root is None: 

        return root 

    root.height = max(get_height(root.left), get_height(root.right)) + 1 

    balance = get_balance(root) 

    if balance > 1 and get_balance(root.left) >= 0: 

        return right_rotate(root) 

    if balance > 1 and get_balance(root.left) < 0: 

        root.left = left_rotate(root.left) 

        return right_rotate(root) 
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    if balance < -1 and get_balance(root.right) <= 0: 

        return left_rotate(root) 

    if balance < -1 and get_balance(root.right) > 0: 

        root.right = right_rotate(root.right) 

        return left_rotate(root) 

    return root” 

4.5.3 Rotations in AVL Tree 

Rotations are used to rebalance the tree when it becomes unbalanced. 

1. Right Rotation: Applied when the left subtree is taller. 

2. Left Rotation: Applied when the right subtree is taller. 

3. Rotation from the Left to the Right: A combination of left and right rotations. 

4. Rotation from the Right to the Left: A combination of rotation from the Right to the Left. 

4.5.4 Traversal in an AVL Tree 

Traversal methods in an AVL tree are the same as in a binary search tree. The common methods 

are in-order, pre-order, and post-order traversals. 
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Unit 5 

Searching and Sorting 

 

 

Objective: 

 At the end of this session students shall be learning: 

●   “ Introduction of Principle of OOP's concept 

●  Understand Object Oriented Methodology 

●  Overview of procedure Oriented programming 

●  Definition of Object Oriented Programming. 

●   Object Oriented Languages” 

 

Structure: 

5.1 Searching and Sorting with Linear Search 

5.2 Binary Search 

5.3 Comparison of Linear Search and Binary Search 

5.4 Sorting Algorithms: Selection Sort, Insertion Sort, and Shell Sort 

5.5 Comparison of Sorting Technique 
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5.1 Searching and Sorting with Linear Search 

Searching and sorting are fundamental operations in computer science that are essential for 

efficiently managing and retrieving data. Here's an overview of two common searching 

algorithms: Linear Search and Binary Search, along with a comparison of their characteristics. 

Linear Search is the simplest searching algorithm. It sequentially checks each element of the list 

until the desired element is found or the list ends. 

5.1.1 Algorithm for Linear Search: 

1. Begin with the list's first entry. 

2. Make a comparison between the target and current elements. 

3. Return the location of the current element if it is the target. 

4. Proceed to the next element if the current element is not the target. 

5. Until the target element is located or the list is finished, repeat steps 2-4. 

Example: 

“def linear_search(arr, target): 

    for i in range(len(arr)): 

        if arr[i] == target: 

            return i 

    return -1” 

5.1.2 Characteristics: 

● Time Complexity: O(n), where n is the number of elements in the list. 

● Space Complexity: O(1). 

● Use Case: Works well with small or unsorted lists. 

5.2 Binary Search 

A more effective technique is Binary Search, however it needs the list to be sorted beforehand. 

The list is divided in half repeatedly, cutting the search period in half each time. 
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5.2.1 Algorithm for Binary Search: 

1. Start with two pointers: one at the beginning (low) and one at the end (high) of the list. 

2. Calculate the middle index. 

3. Compare the middle element with the target element. 

4. If the middle element is the target, return its position. 

5. If the target is smaller than the middle element, search the left half. 

6. If the target is larger than the middle element, search the right half. 

7. Repeat steps 2-6 until the target element is found or the search interval is empty. 

Example Implementation: 

“def binary_search(arr, target): 

    low = 0 

    high = len(arr) - 1 

    while low <= high: 

        mid = (low + high) // 2 

        if arr[mid] == target: 

            return mid 

        elif arr[mid] < target: 

            low = mid + 1 

        else: 

            high = mid - 1 

    return -1” 

5.2.2 Characteristics: 

● Time Complexity: O(log n), where n is the number of elements in the list. 

● Space Complexity: O(1) for iterative, O(log n) for recursive. 

● Use Case: Suitable for large, sorted lists. 
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5.3 Comparison of Linear Search and Binary Search 

 

                                     Fig 5.1 Comparison Chart 

5.4 Sorting Algorithms: Selection Sort, Insertion Sort, and Shell Sort 

Sorting is a fundamental operation in computer science used to arrange data in a specific order, 

typically in ascending or descending order. Here, we discuss three common sorting algorithms: 

Selection Sort, Insertion Sort, and Shell Sort, along with a comparison of their characteristics. 

5.4.1 Selection Sort 

Choosing Sort is a basic sorting algorithm that relies on comparisons. The input list is split into 

two sections: the sorted portion on the left and the unsorted portion on the right. The list is 

initially unsorted and the sorted portion is empty. 

Algorithm for Selection Sort: 

1. Iterate over the list. 

2. Find the minimum element in the unsorted part of the list. 

3. Swap the minimum element with the first element of the unsorted part. 
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4. Move the boundary between the sorted and unsorted parts one element to the right. 

5. Repeat steps 1-4 until the entire list is sorted. 

Example Implementation: 

“def selection_sort(arr): 

    n = len(arr) 

    for i in range(n): 

        min_idx = i 

        for j in range(i+1, n): 

            if arr[j] < arr[min_idx]: 

                min_idx = j 

        arr[i], arr[min_idx] = arr[min_idx], arr[i] 

    return arr” 

5.4.2 Characteristics: 

● Time Complexity: O(n²) 

● Space Complexity: O(1) 

● Stability: Not stable 

● Use Case: Simple to implement, useful for small lists 

5.4.3 Insertion Sort 

Insertion Sort is a comparison-based sorting algorithm that builds the final sorted array one item 

at a time. It is much like sorting playing cards in your hands. 

5.4.4 Algorithm for Insertion Sort: 

1. From the second member to the last, go through the list iteratively. 

2. Compare each element with those in the sorted section of the list. 

3. Place the element in the sorted section at the appropriate location. 

4. Continue steps 2-3 for every element in the list until it is sorted. 

Example Implementation: 

“def insertion_sort(arr): 
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    for i in range(1, len(arr)): 

        key = arr[i] 

        j = i - 1 

        while j >= 0 and key < arr[j]: 

            arr[j + 1] = arr[j] 

            j -= 1 

        arr[j + 1] = key 

    return arr” 

5.4.5 Characteristics: 

● Time Complexity: O(n²) worst case, O(n) best case 

● Space Complexity: O(1) 

● Stability: Stable 

● Use Case: Efficient for small or nearly sorted lists 

5.4.5 Shell Sort 

Shell Sort is an in-place comparison-based sorting algorithm. It is an extension of insertion sort 

that makes distant items interchangeable. The goal is to organize the list of items so that a sorted 

list may be obtained by taking every h-th member starting from any position. 

5.4.6 Algorithm for Shell Sort: 

1. Choose a sequence of gaps (e.g., n/2, n/4, ..., 1). 

2. For each gap, perform a gapped insertion sort. 

3. Reduce the gap and repeat step 2 until the gap is 1. 

4. The list is sorted when the gap is reduced to 1. 

Example “ 

def shell_sort(arr): 

    n = len(arr) 

    gap = n // 2 

    while gap > 0: 
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        for i in range(gap, n): 

            temp = arr[i] 

            j = i 

            while j >= gap and arr[j - gap] > temp: 

                arr[j] = arr[j - gap] 

                j -= gap 

            arr[j] = temp 

        gap //= 2 

    return arr “ 

5.4.7 Characteristics: 

● Time Complexity: Depends on the gap sequence, typically O(n log n) to O(n²) 

● Space Complexity: O(1) 

● Stability: Not stable 

● Use Case: More efficient than insertion sort for medium-sized lists 

5.5 Comparison of Sorting Techniques 

 
                                         Fig 5.2 Comparison Chart 
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